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Outline

▪ Illustration of how finite element method works on 1D problems

▪ Finite elements in 2D: boundary conditions, dealing with interfaces between
materials
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Example: shielded conductor on a dielectric
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Example: DC transmission line (telegraph equations)

DC current transmission line consisting of a 
pair of buried pipes
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To solve the problem analytically, 
consider a short length 𝑑𝑥 

Its logitudinal resistance causes a 
longitudinal voltage drop 𝑑𝑣

Current 𝑑𝑖 flows betweeen pipes, 
represented by the shunt 
conductance 𝑔 ∙ 𝑑𝑥.

The differences 𝑑𝑣 and 𝑑𝑖 in voltages and currents at the two ends 𝑥 and 𝑑𝑥 +
𝑑𝑥 are:

𝑑𝑖 = (𝑣 + 𝑑𝑣)𝑔 ⋅ 𝑑𝑥

After rewriting and discarding second-order terms (i.e. 𝑑𝑣𝑔 ∙ 𝑑𝑥) these 
equations become:

𝑑𝑖

𝑑𝑥
= 𝑔𝑣

𝑑𝑣 = 𝑖𝑟 ⋅ 𝑑𝑥

𝑑𝑣

𝑑𝑥
= 𝑟𝑖



Introductory example: DC transmission line

▪ Differentiating with respect to 𝑥:
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Substituting previous two equations into these yields the pair of differential equations:

▪ Two boundary conditions apply here:

- voltage has a known value 𝑣0 at the sending end 𝑥 = 𝐿: 𝑣(𝑥 = 𝐿) = 𝑣0

- current vanishes at the receiving end: 𝑖 𝑥 = 0 = 0

▪ The analytical solution is then:

𝑑2𝑣

𝑑𝑥2
= 𝑟

𝑑𝑖

𝑑𝑥

𝑑2𝑖

𝑑𝑥2
= 𝑔

𝑑𝑣

𝑑𝑥

𝑑2𝑣

𝑑𝑥2
= 𝑟𝑔𝑣

𝑑2𝑖

𝑑𝑥2
= 𝑟𝑔𝑖

𝑑𝑣

𝑑𝑥
= 𝑟𝑖

𝑣 = 𝑣0

𝑒 𝑟𝑔𝑥 + 𝑒− 𝑟𝑔𝑥

𝑒 𝑟𝑔𝐿 + 𝑒− 𝑟𝑔𝐿



DC transmission line – the finite element approach

▪ This approach does not solve the differential equations directly

6

• Instead, a mathematical principle is used which is equivalent to saying that 
the voltage distribution along the line is such that the power loss is minimized

• This is similar to an approach in analytical (or classical) mechanics where 
complicated problems can be solved on approaches based on the principle of 
least action (Euler - Lagrange equations)



Steps in the finite element approach – Step 1/6

▪ Express the power 𝑊 lost in the line in terms of the voltage distribution 𝑣(𝑥):

7

It can be shown (we will not do it here) that the power 𝑊 lost in the line in terms of the 
voltage distribution 𝑣(𝑥) is:

▪ The power entering any section at its left is:

▪ while the power leaving on the right is:

𝑊 = 𝑊 𝑣 𝑥

𝑊 = − න
0

𝐿

𝑔𝑣2 +
1

𝑟

𝑑𝑣

𝑑𝑥

2

𝑑𝑥

𝑊𝑜𝑢𝑡 = (𝑣 + 𝑑𝑣)(𝑖 + 𝑑𝑖)

𝑊𝑖𝑛 = 𝑣𝑖

The difference is the power lost in the section 𝑑𝑥. Neglecting second order 
terms, this difference is given by:

𝑑𝑊 = 𝑊𝑖𝑛 − 𝑊𝑜𝑢𝑡 = −𝑣𝑑𝑖 − 𝑖𝑑𝑣



Step 2/6: subdivision

▪ Subdivide the domain of interest (the entire transmission line) into 𝑲 finite
sections (elements)
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In this notation, voltages and currents might be labelled as 𝑣 𝑘 𝑙 or 𝑖 𝑘 𝑟 and 
the corresponding positions of the two element ends as 𝑥 𝑘 𝑙 and 𝑥 𝑘 𝑟. 

▪ The entire line, spanning 0 ≤ 𝑥 ≤ 𝐿 is subdivided into 𝐾 segments (finite 
elements)

▪ We number the 𝐾 elements in order, begining at the left end, label an 
individual segment with index 𝑘 = 1 … 𝐾

▪ Left and right ends will be denoted by suffixes 𝑙 and 𝑟



Step 3/6: approximate voltage

▪ We approximate that the voltage varies linearly with distance 𝑥 within any of 
the  elements. We can then write the following equation:

9

It is convenient to rewrite this as:

where

▪ Important condition: voltages must 
be continuous across the nodes

𝑣 =
𝑥(𝑘)𝑟 − 𝑥

𝑥(𝑘)𝑟 − 𝑥(𝑘)𝑙
𝑣(𝑘)𝑙 +

𝑥 − 𝑥(𝑘)𝑙

𝑥(𝑘)𝑟 − 𝑥(𝑘)𝑙
𝑣(𝑘)𝑟

𝑣 = 𝛼𝑙(𝑥)𝑣𝑙 + 𝛼𝑟(𝑥)𝑣𝑟

𝛼𝑙(𝑥) =
𝑥𝑟 − 𝑥

𝑥𝑟 − 𝑥𝑙
𝛼𝑙(𝑥) =

𝑥 − 𝑥𝑙

𝑥𝑟 − 𝑥𝑙

This is a linear combination of 
voltages on the left and right ends 
(𝑣(𝑘)𝑙, 𝑣(𝑘)𝑟)



Step 4/6: express power lost in each element

▪ It can be shown that the power lost in segment 𝑘 can be written in the 
following form:
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with:

𝑊𝑘 = − 𝑣𝑙 𝑣𝑟
1

𝑟𝑘𝐿𝑘

1 −1
−1 1

+
𝑔𝑘𝐿𝑘

6
2 1
1 2

𝑣𝑙

𝑣𝑟

▪ In order to express the power lost in each element, we would have to 
substitute voltage in this expression:

𝑣 = 𝛼𝑙(𝑥)𝑣𝑙 + 𝛼𝑟(𝑥)𝑣𝑟

𝑊 = − න
0

𝐿

𝑔𝑣2 +
1

𝑟

𝑑𝑣

𝑑𝑥

2

𝑑𝑥

for every segment

where 𝐿𝑘 , 𝑟𝑘  and 𝑔𝑘  are length, resistance and conductance of segment 𝑘.



Step 5/6: Reconnect the elements

▪ We now have to put together the individual power values for all elements and 
then minimize power with respect to nodal voltages 𝑣𝑖 .
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where

▪ The total power loss can be written in a matrix form:

𝑊 = −𝐕𝑐𝑜𝑛
𝑇 𝕄𝐕𝑐𝑜𝑛

𝐕𝑐𝑜𝑛 =

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6 𝑐𝑜𝑛

𝐕𝑐𝑜𝑛
𝑇 = 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6



Step 5/6: Reconnect the elements

The total power loss can be written in a matrix form:
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𝑊 = −𝐕𝑐𝑜𝑛
𝑇 𝕄𝐕𝑐𝑜𝑛

𝕄 = 𝔸 + 𝔹

𝔸 =
1

𝐿𝑒𝑟

1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 1

𝔹 =
𝐿𝑒𝑔

6

2 1
1 4 1

1 4 1
1 4 1

1 4 1
1 2



Step 6/6: Minimize power loss

▪ We now have to minimize this loss in order to determine the actual values of 
nodal voltages
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▪ Every nodal voltage is free to vary except for the voltage at the sending end of
the line (that one is determined by the source). We can therefore minimize
power with respect to all nodal voltages except the first one, so with 𝑁 nodes
we have to differentiate with respect to 𝑁 − 1 variables. Hence, power is
minimized by setting:

𝜕𝑊

𝜕𝑣𝑘
= 0, 𝑘 = 1, 2, . . . , 𝑁 − 1



Step 6/6: Minimize power loss

On substituting 𝑊 = −𝐕𝑐𝑜𝑛
𝑇 𝕄𝐕𝑐𝑜𝑛 into 𝜕𝑊

𝜕𝑣𝑘
= 0 we get a matrix equation of 𝑁
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columns, one for each node:

𝑀11 𝑀12 ⋯
𝑀21 𝑀22

⋮ ⋱ ⋮
𝑀45 𝑀46

⋯ 𝑀55 𝑀56

𝑣1

𝑣2

⋮
𝑣4

𝑣6

= 0

𝑣6 is the source voltage and it is known, so we can transpose this voltage to 
the right hand side:

𝑀11 𝑀12 ⋯
𝑀21 𝑀22

⋮ ⋱ ⋮
⋯ 𝑀55

𝑣1

𝑣2

⋮
𝑣5

=

−𝑀16𝑣6

−𝑀26𝑣6

⋮
−𝑀56𝑣6

Solve as a system of linear equations and we’re done!



Finite element solution
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voltage

distance from the receiving end



2D problems



Example of a 2D problem

▪ What is the voltage distribution in the space between conductors in this 
rectangular coaxial transmission line
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conductor

region of 
interest (air)

▪ The voltage potential in the space
between the conductors is 
governed by the Laplace equation:

∇2𝑢 = 0

▪ As the transmission line has two planes of 
symmetry, only one quarter of the actual 
region needs to be analyzed



Boundary conditions in electrostatics

▪ In electrostatic problems, we are looking for voltage distribution in space
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▪ We can encounter following types of boundary conditions:

1. Known voltage or grounded

𝑢 = 𝑢0

2. Insulation

𝜎
𝜕𝑢

𝜕𝑛
= 0

3. Symmetry

or 
simply

𝜕𝑢

𝜕𝑛
= 0

𝜕𝑢

𝜕𝑛
= 0

conductor

region of 
interest (air)

4. Current continuity

Dirichlet boundary conditions

Von Neumann boundary conditions

𝜎1

𝜕𝑢1

𝜕𝑛
= 𝜎2

𝜕𝑢2

𝜕𝑛



First-order elements
▪ The problem region is subdivided into triangular elements
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Finite element mesh
conductor

region of 
interest (air)

▪ The finite element method consists of:
▪ Approximating the potential 𝑢 within each element in a standardized 

fashion
▪ Constraining the potential so it becomes continuous across boundaries

▪ Once the nodal voltages are found, the solution is precisely defined everywhere

▪ Dirichlet boundary conditions are exactly satisfied, while the von Neumann 
conditions are satisfied on average



Material inhomogeneities

▪ Problems involving multiple physical media
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▪ The governing principle is still that of 
the minimal stored energy

▪ The finite element method works as 
before, provided that the element 
subdivision is such that element 
edges follow medium boundaries

▪ The S matrix (Dirichlet matrix, integrals 
of the position function) must be 
multiplied by the local permitivity 
before the element is joined to others

SiO2  = 3.9

Vacuum  = 1

conductor u = 1 V

Mesh
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