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Outline

[llustration of how finite element method works on 1D problems

Finite elements in 2D: boundary conditions, dealing with interfaces between
materials



Example: shielded conductor on a dielectric

Grounded
box
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Vacuume =1
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Si0, & =3.9
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Example: DC transmission line (telegraph equations)

DC current transmission line consisting of a
pair of buried pipes

To solve the problem analytically,
consider a short length dx

Its logitudinal resistance causes a

longitudinal voltage drop dv i rdx i+di

: . - AMA- -
Current di flows betweeen pipes, I [
represented by the shunt v § 8x  prdo
conductance g - dx. | |

The differences dv and di in voltages and currents at the two ends x and dx +
dx are:

dv=ir-dx di=Ww+dv)g-dx
After rewriting and discarding second-order terms (i.e. dvg - dx) these
equations become:

dav. di
dx_n dx_gv



Introductory example: DC transmission line

Differentiating with respect to x:

d?v di d?i dv
dx dx dx? dx
Substituting previous two equations into these yields the pair of differential equations:
d?v d?i ,
— =Trgv — =1T1gl
dx? g dx? g

Two boundary conditions apply here:

- voltage has a known value v, atthe sendingend x = L: v(x = L) = v,
- current vanishes at the receivingend: i(x = 0) =0
dv ,
— =TI
dx

The analytical solution is then:

e\/@x + e_\/@x
eVTgL 4 o—TgL

U=v0



DC transmission line — the finite element approach

This approach does not solve the differential equations directly

Instead, a mathematical principle is used which is equivalent to saying that
the voltage distribution along the line is such that the power loss is minimized

This is similar to an approach in analytical (or classical) mechanics where
complicated problems can be solved on approaches based on the principle of
least action (Euler - Lagrange equations)



Steps in the finite element approach - Step 1/6

Express the power I/ lost in the line in terms of the voltage distribution v(x):

W =Wwlv(x)] d
. . . . ;_ J\NW ‘?l
The power entering any section at its left is: l
W, = vi | Seer i

while the power leaving on the right is:
Wour = (v + dv)(i + di)

The difference is the power lost in the section dx. Neglecting second order
terms, this difference is given by:

dW = W;,, — Wy = —vdi — idv

It can be shown (we will not do it here) that the power W lost in the line in terms of the
voltage distribution v(x) is:

W = jL 2 ] dvzd
- Ogv r \dx *




Step 2/6: subdivision

Subdivide the domain of interest (the entire transmission line) into K finite
sections (elements)

(1) (2) (3) (4) (5)

! r | T | r | r | r
O— -0 O -0 O- 0 O O O -0
O —O0 O -0 0O~ 00 -0 O—————0
1 7 2 83 9 4 10 § 6

The entire line, spanning 0 < x < L is subdivided into K segments (finite
elements)

We number the K elements in order, begining at the left end, label an
individual segmentwithindexk =1 ...K

Left and right ends will be denoted by suffixes [ and r

In this notation, voltages and currents might be labelled as v(); or ik, and
the corresponding positions of the two element ends as x(); and x (),



Step 3/6: approximate voltage

We approximate that the voltage varies linearly with distance x within any of
the elements. We can then write the following equation:

p = lor 7 X Voo + X~ X Dy This is a linear combination of
Xr — X(k)l X(r — X(k)l voltages on the left and right ends

(Vo Vixyr)

It is convenient to rewrite this as:

v =, (v + ar () vy

where (1) (2) (3) (4) (5)
Xr — X X — Xp ci ;)cl ;)oi roc’ rocl
a(x) = X — %, a(x) = X — %,
O -0 O- 00O -0 O0——m—0
1 7 2 8 3 9 4 10 5

Important condition: voltages must
be continuous across the nodes o

0
¢

(o)
(o]
(o
o
;




Step 4/6: express power lost in each element

In order to express the power lost in each element, we would have to
substitute voltage in this expression:

W = fL + dv)’ d
=- gv® -] 9

with:
v=a(x)v; + a.(x)v,

for every segment

It can be shown that the power lost in segment k can be written in the
following form:

W= v (rkLkll ] Gk 2 )H

where L, 1, and g, are length, resistance and conductance of segment k.




Step 5/6: Reconnect the elements

We now have to put together the individual power values for all elements and
then minimize power with respect to nodal voltages v; .

(1) (2) (3) (4) (5)

l r | r
O— -0 O -0 O- O O- O O— -0

o
60\

1 2
>  o— O

9

o —0 O -00- 0O 0O O
1 9 4 10 5 6

The total power loss can be written in a matrix form:

W = _Vgon MV,on

where

Veon =

Ve Vi,=[v1 v2 V3 vy Vs Vg

-con



Step 5/6: Reconnect the elements

The total power loss can be written in a matrix form:

W = _VcTon MV,on

M=A+B
1 -1
-1 2 -1
1 _ _
- L 1 2 -1
L7 -1 2 -1 B =
-1 2 -1
-1 1

N

=

=

=R

_ R

lI\JH




Step 6/6: Minimize power loss

We now have to minimize this loss in order to determine the actual values of
nodal voltages

Every nodal voltage is free to vary except for the voltage at the sending end of
the line (that one is determined by the source). We can therefore minimize
power with respect to all nodal voltages except the first one, so with N nodes
we have to differentiate with respect to N — 1 variables. Hence, power is
minimized by setting:

ow

0, k=12,... N—1
avk



Step 6/6: Minimize power loss

T : ow : :
On substituting W = —V!_ MV, into o = 0 we get a matrix equation of N
k

columns, one for each node:

My, My, - 1rvaT

My, My, U2
: " : =0

Mys Mye || Va

Mss MselLVs!

Vg IS the source voltage and it is known, so we can transpose this voltage to
the right hand side:

(My1 My, - 1111 [—Mi16Vs]
My, My, V2| _ | ~MzeVs
Mss] LVs] | —Msevg)

Solve as a system of linear equations and we’re done!



Finite element solution

voltage

1.0

0.9 -

0.8 1

0.7 1

0.5 1

0.4 -
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lllllllllllllllllll

distance from the receiving end



2D problems



Example of a 2D problem

What is the voltage distribution in the space between conductors in this

rectangular coaxial transmission line
y
A

conductor<

The voltage potential in the space \
between the conductors is =0
governed by the Laplace equation:

S
]
(=

wlcu

SR
I
(=]

VZyu = 0 .region of |
interest (air)

As the transmission line has two planes of
symmetry, only one quarter of the actual
region needs to be analyzed



Boundary conditions in electrostatics

In electrostatic problems, we are looking for voltage distribution in space

We can encounter following types of boundary conditions:

1. Known voltage or grounded

> <

U = Ug Dirichlet boundary conditions

2. Insulation conductor< u
ou 0 ~
or u s
co—=0 _. —=0 =0
on simply  gn “
Von Neumann boundary conditions u_
n
3. Symmetry
ou 0
on //1
4. Current continuity region of
ouy ou, interest (air)

04— = 0, ——
L on 2 on



First-order elements

The problem region is subdivided into triangular elements

{ Finite element mesh

conductori u=1

\ gﬁ=0
N u=0
5 » X
u _
5;-—0
region of

interest (air) ||

The finite element method consists of:

=  Approximating the potential u within each element in a standardized
fashion

= Constraining the potential so it becomes continuous across boundaries

Once the nodal voltages are found, the solution is precisely defined everywhere

Dirichlet boundary conditions are exactly satisfied, while the von Neumann
conditions are satisfied on average



Material inhomogeneities

Problems involving multiple physical media

The governing principle is still that of
the minimal stored energy

The finite element method works as
before, provided that the element
subdivision is such that element
edges follow medium boundaries

The S matrix (Dirichlet matrix, integrals
of the position function) must be
multiplied by the local permitivity ¢
before the element is joined to others

Vacuume =1

conductoru=1V

Si0, £=3.9

Mesh

19
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